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Abstract

Temporal text understanding and question answering presupposes the availability of a component which computes
the transitive closure of a set of statements about interval relations. Vilain and Kautz have addressed the question of
computing the transitive closure by translating such statements into equivalent point-based descriptions. The problem
is that there are basic statements about interval relations which have to be translated into disjunctions of point-based
descriptions. Therefore, in order to handle the general case economically, it is necessary to have translations with a
minimum number of disjuncts for each and every case.

In this paper we present an algorithm which computes a best translation, i.e. a translation which consists of a
minimal number of disjuncts. This number amounts at most to 5.

1 Introduction

Understanding a (narrative) natural language text involves relating temporally the events introduced
by the text to each other. Therefore, inferences using transitivity rules for temporal relations have
to be drawn in order to account for events and other temporal units that are not directly connected
in the text by linguistic means. Such inferences for sets of statements about the temporal relations
between intervals are efficiently made by the path consistency algorithm suggested by Allen (cf.
[All83]). However, this algorithm is incomplete. For this reason it has been suggested, mainly by
Kautz and Vilain, that one should translate the given information about intervals into information
about the endpoints of the intervals and tackle the problem in the point based framework. The
point-based path consistency algorithm is complete provided it is extended by an additional test
routine. This complete algorithm is, like Allen’s algorithm, of polynomial complexity (cf. [VK86],
[vB89], [VKvB89], [vB90], [Haj91]).

The translation of (underspecified) interval relations into relations of the corresponding endpoints
is a problem in so far as there are cases where this translation necessarily ends up in a disjunction
of basic statements. For instance, if we know that i occurs before or after j (call this information
RS), we get two alternative translations into point descriptions, T1RS and T2RS, the relevant parts
of which we can render as follows (with s(I) for the start and e(I) for the end of I):

T1RS = {. . . , s(i) {<} e(j), e(i) {<} s(j), . . .}
T2RS = {. . . , s(i) {>} e(j), e(i) {>} s(j), . . .}

RS thus is expressed by the disjunction of T1RS and T2RS. Note, that merging T1RS and T2RS by
combining their decisive constraints to the conditions s(i) {<,>} e(j), e(i) {<,>} s(j), standing for
s(i) before or after e(j) and e(i) before or after s(j), and by listing the other constraints accordingly
results in a set TRS which indeed reflects the structural possibilities of RS but which, in addition,
allows for other solutions like i overlaps j.

We learn from this that the number of alternative translations of sets Σ of interval statements can
be exponential. (For a set Σ stating that i before or after j and j before or after k we would get four
translations). So, in order to compute the transitive closure of Σ by translation into the point case



we must take into account that there are cases where we must apply the revised path consistency
algorithm for points to an exponential number of input sets. (However, the retranslation is unique).
Kautz and Vilain therefore restrict themselves to Σs which have a unique translation. They show
that the general problem is NP-complete. In spite of this result we think that, in particular temporal
text understanding cannot be restricted to the case of convex relations, where convex relations mark
the special case of the disjunctive use of Allen’s relations with unique translation into point based
descriptions (cf. for instance [Nö89]). Van Beek calls this set of relations SP 6= ([vB89]). It is true
that most relations introduced by temporal conjunctions, by temporal adverbs or by the temporal
incorporation of the event of a new sentence in the representation of the preceding text are convex
relations.1 But, nevertheless there are cases where this default is suspended. For instance, in
Last year a lot of important things happende1. Peter got marriede2. John made a tour through the
United Statese3 and another through Polande4. Mary won in the lotteriee5.
the rhetorical or discourse relation holding between the events of sentences 2-4, confirmed by sentence
1, is enumeration.2 The order between e2-e5 obviously is of no interest to the author. This is part
of the rhetorical function. But this does not exclude that one is aware of the fact that e3 occurs
before or after e4, since tours through the United States and tours through Poland undertaken by
the same agent cannot overlap. Though not in focus in the text bit presented, this knowledge can
be used by the author and necessitated by the recipient of the text in order to strengthen the global
temporal structure of the whole text. For instance, these travelling events can be used as temporal
anchors for other events - when John was in Poland, φe6 - thus having an impact on the temporal
relations of other temporal entities of the text. High quality text understanding and in particular
question answering must be able to deal with such cases and, clearly, the relation between e3 and
e4 is not convex. There are other types of information that introduce non-convex relations, but we
cannot go into detail with this here. Since the narratives that natural language systems deal with
are normally relatively short, introducing only a restricted number of temporal entities, and since
it is relatively seldom that non-convex relations are introduced (mainly by background knowledge
accompanying the semantic analysis), in practice, the exponentiality of the closure algorithm does
not lead to intractability. Nevertheless, it is exactly for this reason, that it is necessary to design this
algorithm as efficient as possible. Therefore, it is very important to reduce the number of alternative
translations of interval statements to a minimum. This is what we are concerned with here.

In this paper we show that the number of disjuncts necessary to express the information of
an interval statement amounts at most to 5. 3 We present an algorithm which computes a best
translation, i.e. a translation which consists of a minimal number of disjuncts. This will be done in
section 4. In the sections 2 and 3 we list preliminary definitions and tackle the problem heuristically.

2 Some Definitions

Allen uses the following relation symbols:

Definition: REL, the set of Allen symbols:

REL = {
b (before) bi (before inverse) s (starts) si (starts inverse)
m (meets) mi (meets inverse) d (during) id (identical) di (during inverse)
o (overlaps) oi (overlaps inverse) f (finishes) fi (finishes inverse)

}

Allen’s path consistency algorithm is applied to sets consisting of statements like, for instance,
• i {b, o} j, which stands for: i occurs before j or i overlaps j
• k {bi,mi}j, which stands for k occurs after j or is met by j
(from what we conclude by means of Allen’s algorithm that i {b}k).

1Compare, for instance, studies on temporal semantics like [KR83], [KR85], [Hin86], [Her90], [Ebe91].
2For rhetorical or discourse relations compare for instance [KR85], [TM87], [AL91], [Ebe91].
3This confirms the result that can be taken from the work about convex relations reported in [Nö89].
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Definition: PREL, the set of point relation symbols, BPREL, the set of basic point relation symbols
PREL = {l,g,e, le, ue, ge, 0}
BPREL = {l,g,e}

l, g, e, le, ue, ge, 0 stand in turn for temporally less (precedence), greater (succession), equal, less or
equal, unequal, greater or equal and no information.

The intuition is that the PREL-symbols stand for sets of pairs of points when interpreted mod-
eltheoretically in the point substructure of a model which satisfies suited axioms for points and
intervals. It is clear that this set of axioms has to be a superset of Allen’s interval axioms and that
the axioms regulating the interplay of points and intervals has to be compatible with Allen’s axioms.
We omit being more specific about this. (Compare for instance [Bit86]).

Against this background it is natural to stipulate PREL to be partially ordered by means of ≤ps

according to a join semi-lattice operation tps which reflects the union in point structures.

Definition: The join semi-lattice PREL
< PREL,tps > is a complete atomic tps-semi lattice with the set of atoms BPREL and
l tps g = ue , l tps e = le , g tps e = ge , ue tps le = 0, ge tps le = 0, ue tps ge = 0.
≤ps is the partial order resulting from tps .

The intuitive meaning of Allen’s symbols now can be expressed by means of relations between the
endpoints of intervals (the start of i, s(i), the end of i, e(i)) using the symbols introduced (I for the
set of intervals). For instance, we will have:

∀i, j ∈ I : i o j↔s(i) < s(j) < e(i) < e(j)
∀i, j ∈ I : i s j↔s(i) = s(j) < e(i) < e(j)

In the following we will use a compact notation in order to express an Allen statement by a point
based description. Therefore we define 4-place-vectors.

Definition: V EC, the set of vectors
V EC := {[A,B,C,D] | A,B, C,D ∈ PREL}

Convention:
Be V a tuple (for instance V ∈ V EC).
Then V i is the i-th projection of V , i.e. the i-th slot of the tuple (if existent, otherwise it is not
defined).

For instance, if V ∈ V EC with V = [A,B, C, D], then V 2 = B, V 4 = D, . . ..
Now, we require that for intervalls i, j, PREL-symbols A,B,C,D:

i {[A,B,C,D]} j stands for s(i) A s(j), s(i) B e(j), e(i) C s(j), e(i) A e(j)

Of course, as in the case of Allen statements
• i {V1, . . . , Vn} j stands for i V1 j ∨ . . . ∨ i Vn j (for V1, . . . , Vn ∈ V EC).

It turns out that, on the basis of such axioms as mentioned above, such vector descriptions are
sufficient to retain the information of Allen statements.

Now we use ≤ps to define a partial order for V EC.

Definition: “V contains V ′ ”
∀V, V ′ ∈ V EC : V ≤vs V ′↔

∧
i∈{1,...,4}(V

i ≤ps V ′i)

Definition: AV EC, the set of atomic vectors
∀V ∈ V EC : V ∈ AV EC↔¬(∃V ′ ∈ V EC : V ′ <vs V )

(where V ′ <vs V↔V ′ ≤vs V ∧ V ′ 6= V ).
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It is clear that AV EC = {[A,B,C,D] | A,B, C, D ∈ BPREL}.
Having in mind the meaning and use of vectors as attributed to them here, it is clear what a canonical
translation (ct) of the Allen symbols will look like.

Definition: The canonical translation of the Allen symbols: the function ct
ct : REL → AV EC with
ct(b) = [l,l,l,l] ct(m) = [l,l,e,l] ct(o) = [l,l,g,l] ct(s) = [e,l,g,l]
ct(bi) = [g,g,g,g] ct(mi) = [g,e,g,g] ct(oi) = [g,l,g,g] ct(si) = [e,l,g,g] ct(id) = [e,l,g,e]
ct(d) = [g,l,g,l] ct(f) = [g,l,g,e] ct(fi) = [l,l,g,e] ct(di) = [l,l,g,g]

A vector statement i V j reflects a set of relational possibilities with respect to Allen’s symbols,
those for which the canonical translation V ′ is contained within V . For this reason we call such V ′s
a solution of V and more generally, abstracting from particular V s:

Definition: SOL, the set of possible solutions
We call V ∈ AV EC a possible solution iff V ∈ SOL, where:

∀V ∈ V EC : V ∈ SOL↔(∃R ∈ REL : ct(R) = V )

Of course, there is no need for V s to be a solution or to have solutions. For instance, for V with
V = [l,g,ue,ue] there is no V ′ with V ′ ≤vs V for which V ′ ∈ SOL can be true. Along the lines of
interpretation sketched above V denotes necessarily the empty set of interval pairs. We say that V
does not contain any solution.

Definition: The set NCSOL
For V ∈ V EC: V does not contain any solution iff V ∈ NCSOL, where:

∀V ∈ V EC : V ∈ NCSOL↔¬(∃V ′ ∈ SOL : V ′ ≤vs V )

3 In Search of a Best Translation

When translating interval statements (using Allen symbols) into vector statements the relevant input
is just the set of Allen symbols, not the intervals. Therefore, in the following we focus exactly on this
input. Singleton sets are no problem. We use the canonical translation. For richer sets RR (⊆ REL)
the strategy will be to use the canonical translation of the elements R of RR and to combine them
into the least possible number of vectors for which the retranslation returns exactly RR. Note, that
the retranslation comes out with a definite value.

Definition: The retranslation rt
rt : Pow(V EC)→Pow(REL), with:
rt(V V ) = {R | it existsV ∈ V V : ct(R) ≤vs V }

Using this, we easily define the translation.

Definition: The translation T
Be RR ⊆ REL, V V ⊆ V EC

T (RR, V V )↔rt(V V ) = RR

We stress that T is indeed a relation, not a function. We are interested only in best translations.

Definition: The best translation τ
Be RR ⊆ REL, V V ⊆ V EC

τ(RR, V V )↔T (RR, V V ) ∧ ¬(∃V V ′ : T (RR, V V ′)∧ |V V ′ |<|V V |)
∧(∀V V ′ : T (RR, V V ′)∧ |V V ′ |=|V V |) → unequ(V V ′) ≥ unequ(V V ))
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This should be selfexplaining, except for the necessity and meaning of the last conjunct of the
definition using unequ.

Definition: The inequalites of a set of vectors unequ
Be V V ⊆ V EC:

unequ(V V ) = ΣV ∈V V Σ4
i=11ue(V

i)

(Here 1ue is the characteristic function which returns 1 if the argument is ue and 0 otherwise.)
unequ counts the ue slots of the vectors of V V . Provided the same cardinality of translations V V
and V V ′, we prefer V V to V V ′ iff V V counts at most as many inequalities as V V ′. We do this since
van Beek has shown that the inequalities must trigger an additional subroutine to guarantee the
completeness of the Vilain/Kautz-algorithm (cf. [vB90]).

We observe that if we want to combine solution vectors V with V = [A,B,C,D] and V ′ with V ′ =
[A’,B’,C’,D’] to a vector V ′′ whose retranslational impact is the same as that of the union of V and
V ′, V ′′ must contain V and V ′, i.e. it must hold that V, V ′ ≤vs V ′′. This means that it must hold:
V itpsV

′i ≤ps V ′′i for all i ∈ {1, . . . , 4}.
We say that V ′′ must contain the space built up by V and V ′.

Definition: The space of a set of vectors
Be V V ⊆ V EC:

space(V V ) = W , where for all i ∈ {1, . . . , 4} : W i = supps{V i | V ∈ V V }

(Here supps stands for the function which, applied to a subset of PREL, returns the least upper
bound in the sense of ≤ps of this subset.)

In order to reduce the number of vectors a procedure for computing translations cannot use the
space-function in an unrestricted way. Take, for instance, the canonical translations [l,l,g,l], [e,l,g,e]
of o and id. The space of these vectors, [le,l,g,le], contains, in addition to ct(o) and ct(id), [l,l,g,e]
(= ct(fi)) and [e,l,g,l] (= ct(s)). This is due to the fact that ct(o) and ct(id) differ in more than one
place. For this reason, other atomic vectors are contained in the space which are constructed from
the alternate use of the differing PREL-projections of ct(o) and ct(id). This does no harm if the
additional atomic vectors are not solutions, but it does if they are (as in the example).

Of course, this problem disappears if, from the beginning of the translation procedure, we com-
bine pairs of vectors which differ in exactly one place, as suggested by Bittel in [Bit86]. This strategy
defines the following reduction procedure:

PROCN
Input: V VI ⊆ V EC
Output: V VO ⊆ V EC, a shorter version of V VI (rt(V VO) = rt(V VI))

• V V←V VI

• WHILE there are V, V ′ ∈ V V with N(V, V ′)

DO

BEGIN
• SELECT V, V ′ ∈ V V with N(V, V ′)
• V V←(V V

⋃{space({V, V ′})}) \ {V, V ′}
END

• V VO←V V

Here, N tests for neighborhood, i.e. for the difference in one place.
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Definition: The neighborhood
Be V, V ′ ∈ V EC:

N(V, V ′)↔Σ4
i=116=(V i, V ′i) = 1

(16= is the characteristic function which tests for the inequality of pairs of symbols).

There are some problems connected to this strategy. We observe that there are cases where a
more powerful combination scheme is necessary:

Example1: V V = {V1, V2, V3}
with V1 = ct(fi) = [l,l,g,e], V2 = ct(o) = [l,l,g,l] V3 = ct(b) = [l,l,l,l].

The test N allows for combining V1 and V2, V2 and V3, not for combining V1 and V3. Choosing
the first alternative yields the space [l,l,g,le]. This vector cannot be combined to V3 under N . The
same situation results if we choose the second alternative. We get [l,l,ue,l] which cannot be combined
to V1. However, building the space of V V results in the vector [l,l,ue,le] which, next to V1, V2, V3

contains only the atomic vector [l,l,l,e] which is no solution. So we could correctly reduce V V to one
vector.

If we concentrate for a moment on the first alternative yielding [l,l,g,le] as the result of combining
V1 and V2, we see that we could combine this vector under N with V3 if, first, we would “pump up”
the latter one by the non-solution [l,l,l,e].

Therefore, we define the revised version AN of the neighborhood condition which accepts vectors
V, V ′ as neighbors iff the sum of differences can be restricted to 1 by “pumping up” V or V ′ respec-
tively by specific atomic vectors which are not solutions. (In our translation procedure, presented
in the next section, this “pumping up” will be only necessary for vectors which stem from {b,m}
or from {bi, mi} respectively. Therefore in the following definitions we will restrict ourselves to this
specific case).

Definition : Generalized neighborhood
For V, V ′ ∈ V EC:

AN(V, V ′)↔∃V ∗, V ′∗ ∈ V EC : (V ∗ ∈ add-ncsol(V )∧V ′∗ ∈ add-ncsol(V ′)∧N(V ∗, V ′∗))

Definition : “pumped up” version of vectors (add specific NCSOL-vectors)
For V, V ∗ ∈ V EC:

V ∗ ∈ add-ncsol(V ) ↔ [V 2 ∈ {ge, g, e} ∧ V ∗2 = V 2 ∧
∧

i∈{1,3,4}(V ∗i ≥ps V i)]

∨[V 3 ∈ {le, l, e} ∧ V ∗3 = V 3 ∧
∧

i∈{1,2,4}(V ∗i ≥ps V i)]

∨V ∗ = V
We stress, that the ncsol- definition guarantees that pumping up does not consist of a blind

adding of non-solutions (which could result in the undesired ≤vs-inclusion of new solutions which
may develop from the crossproduct of suitable projections). We can only generalize (in the sense of
≤ps) these projections of the initial vector which are predicted by the value of a particular place
by means of the underlying knowledge about endpoints of intervals and point structures. The first
disjunct reflects the case where the start of the first interval does not precede the end of the second.
From this follows that, with respect to the other projections, solutions require strict succession. The
second disjunct reflects the symmetric case for vectors from {b,m}.
PROCAN : the same as PROCN , but with the condition N(V, V ′) replaced by AN(V, V ′)

With PROCAN we get the satisfying result with respect to example 1 if, in the first step, we choose
the first alternative (the combination of V1 and V2). But choosing the second alternative (yielding
[l,l,ue,l]) puts us before another (deeper) problem. We can further weaken the filter for the applica-
tion of the amalgamating space-function. Considering the relevant cases shows that even the weakest
version is not sufficient. This version would allow for the application of the space-function iff all
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solutions reached this way already are contained in one of the vectors of the actual V V . This filter
version is not sufficient since it cannot rule out misleading reduction steps.

Example2: {ct(di), ct(o), ct(s), ct(oi)}

Here the choice of combining ct(di) and ct(o) prevents the procedure from doing any further combi-
nation (which would be a false one) whereas the choice of combining ct(di) and ct(oi) allows for the
second combination of ct(o) and ct(s).

Instead of using a weak filter and correcting misleading combinations by expensive backtracking
we have decided to use the filters N and AN and to direct the combining steps by a suited sorting
of the input set V VI .

This sorting is based upon the very relevant neighborhood property N . To begin with, N singles
out a specific cover of REL, the cover TT , consisting of sets of pairwise neighboring Allen symbols.
Since each of these sets consist of 3 symbols we call them the triangle sets.

Definition : The set TT of the triangles of REL
TT := {T1, T2, T3, T4, T

′
2, T

′
3, T

′
4, T5}, where:

T1 := {b,m, o} T2 := {di, fi, o} T ′
2 := {di, si, oi}

T5 := {oi,mi, bi} T3 := {si, id, s} T ′
3 := {fi, id, f}

T4 := {oi, f, d} T ′
4 := {o, s, d}

T2, T3, T4 are called the horizontal triangles, T ′
2, T

′
3, T

′
4 are the vertical triangles.

The geometrical terminology used here is due to a suited diagrammatical representation of the
neighborhood which, for lack of space, we have to omit here.

Nevertheless we continue discriminating specific geometrical subsets of REL the use of which,
however, will be made explicit only later.

Definition : The set SS of the small squares of REL
SS := {S1, S2, S3, S4}, where:
S1 := {di, fi, si, id} S2 := {fi, o, id, s}
S3 := {si, id, oi, f} S4 := {id, s, f, d}

Definition : The set S̄S of the big squares of REL
S̄S := {S̄1, S̄2, S̄3, S̄4, S̄5}, where:
S̄1 := {di, fi, oi, f} S̄2 := {fi, o, f, d}
S̄3 := {di, o, si, s} S̄4 := {si, s, oi, d}
S̄5 := {di, o, oi, d}

In addition, we partition REL by:

Definition : The full maximal square RELs and the rest RELr

RELs := {di, fi, o, si, id, s, oi, f, d}
RELr := {b,m, mi, bi}

It is easily verified that PROCN applied to subsets of triangles and squares - except subsets of
the full maximal square - always results in a best translation, independent on the choices about com-
binatorical alternatives. For subsets of triangles the result always consists of just one vector. This is
equally true for sets which are complete squares including the full maximal square.

The problem is to sort the input into a suited cover consisting of subsets of triangles and squares
that is not misleading with respect to combining steps after this first step of combining the vectors
of a particular triangle or square.

There are mainly two cases to be considered. First, the case where a best translation does not
require that the same solution is contained in more than one of the resulting vectors and the second
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case where it does. Example 1 and example 2 illustrate the first case. To the second we will turn
later. For the rest of this section we will concentrate on input sets which are subsets of RELs. We
will say something about the general case only in the next section.

Example 2 is based on a subset of RELs. We call it RR. With respect to RR we have to make
sure that for the first combination ct(di) and ct(oi) are taken or ct(o) and ct(s), but not ct(di) and
ct(o). This is guaranteed if we choose the cover consisting of the horizontal

triangles T2, T3, T4, not the corresponding vertical cover.

Definition: The partition of RELs-symbols
Be RR ⊆ RELs:

Ph(RR) = {RR
⋂

T2, RR
⋂

T3, RR
⋂

T4}
Ph(RR) is called the horizontal partition of RR.

Pv(RR) = {RR
⋂

T ′
2, RR

⋂
T ′

3, RR
⋂

T ′
4}

Pv(RR) is called the vertical partition of RR.

The value of a partition:
We omit here the exact definition. val is used (by the corresponding order ≤w) to prefer one partition
alternative to the other, namely the one which needs fewer triangles of the corresponding dimension
for a cover than the other. If both partitions need the same number of triangles the number of the
inequality symbols contained in the space vectors of the partition elements determines the choice
in a rather tricky way. We do not discuss this here, but only observe that the val-criterion decides
example 2 in the right way.

Finally, we turn to the second case mentioned above.

Example3: V V = {ct(s), ct(si), ct(f), ct(fi), ct(id)}

V V , a set of five vectors, can be reduced, independently of the successive choices of vector pairs,
by PROCN to two vectors. The problem here is that the results arrived at this way are not best
translations in that one of the returned vectors will contain an inequality ue as can be easily checked.
We wanted to avoid inequalities if possible and, here, it is possible (V VO = {[0,l,g,e], [e,l,g,0]}). The
sorting in this case has to avoid the decision between the horizontal cover and the vertical cover.
Instead of this it must be sensitive to some exceptional cases among which we should find the con-
stellation RR = T2

⋃
T ′

2. In the translation procedure of the next section we take into account such
specific cases by the conditions C1-C7.

4 The algorithm

In addition to the procedures defined in the last section, we need another one which serves as sub-
procedure of the main procedure defined below.

PROCas
N

Input: RR ⊆ REL
Output: V VO ⊆ V EC, a translation of RR (rt(V VO) = RR)

• V VI←{ct(R) | R ∈ RR}
• V VO ←PROCN (V VI)

This is the same as PROCN but with the canonical translation put at the beginning.
The following main procedure is meant to compute best translations for incoming sets of Allen

symbols. In a first step of ordering the input along the lines of the “geometrical” partitionings
motivated in the last section, we consider nine cases with preconditions C1-C9 which exclude each
other but which, taken together, reflect all combinatorical possibilities. In a second step the other
procedures are used as sub-routines.
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PROCτ
Input: RR ⊆ REL
Output: V V ⊆ V EC, a best translation of RR (rt(V V ) = RR)

• RRs←RR
⋂

RELs

• RRr←RR
⋂

RELr

• CASE1 (C1: RRs = ∅)
• V VC←∅

• CASE2 (C2: Exists i ∈ {1, . . . , 4}, j ∈ {1, . . . , 5} with RRs = Si
⋃

S̄j)

• V VC←PROCN (PROCas
N (Si)

⋃
PROCas

N (S̄j))

• CASE3 (C3: Exists i, j ∈ {1, . . . , 4}, i 6= j with RRs = Si
⋃

Sj)

• V VC←PROCN (PROCas
N (Si)

⋃
PROCas

N (Sj))

• CASE4 (C4: Exists i, j ∈ {1, . . . , 4}, i 6= j with RRs = S̄i
⋃

S̄j)

• V VC←PROCN (PROCas
N (S̄i)

⋃
PROCas

N (S̄j))

• CASE5 (C5: Exists i ∈ {1, . . . , 4}, T ∈ {T2, T3, T4, T
′
2, T

′
3, T

′
4} with RRs = Si

⋃
T )

• V VC←PROCN (PROCas
N (Si)

⋃
PROCas

N (T ))

• CASE6 (C6: Exists i ∈ {1, 2, 3} with RRs = Ti
⋃

T ′2)

• V VC←PROCN (PROCas
N (Ti)

⋃
PROCas

N (T ′2))

• CASE7 (C7: Exists i ∈ {1, 2, 3} with RRs = T ′i
⋃

T2)

• V VC←PROCN (PROCas
N (T ′i )

⋃
PROCas

N (T2))

• CASE8 (C8: ¬(
∨

i∈{1,...,7}Ci) and val(Ph(RRs)) ≤w val(Pv(RRs)))

• V VC←PROCN (
⋃3

i=1 PROCas
N (Ph(RRs)i))

• CASE9 (C9: ¬(
∨

i∈{1,...,8}Ci))

• V VC←PROCN (
⋃3

i=1 PROCas
N (Pv(RRs)i))

• V V←PROCAN (V VC
⋃

PROCas
N (RRr))

Theorem:

a) For all RR ∈ REL: PROCτ applied to RR returns a best translation of RR.

b) For all RR ∈ REL: A best translation of RR contains at most 5 vectors.

c) There are RR ∈ REL a best translation of which contains exactly 5 vectors.

With respect to a), for lack of space we can only sketch the prove. It mainly consists of going through
the cases 1)-9) of PROCτ , checking the described constellations. (One easily sees that geometrically
symmetrical constellations can be merged into one checking case). With this we get the proof for
the case RR ∈ RELs. In order to prove the general case, we use this result and, in addition, the
following lemma, which is easily checked:

Lemma:

a) RR ⊆ {b, m}, RR 6= ∅, V ∈ V EC, rt(V ) 6⊆ {b,m}.
Then ct(o) ≤vs space({V }⋃{ct(R) | R ∈ RR}).

b) RR ⊆ {bi, mi}, RR 6= ∅, V ∈ V EC, rt(V ) 6⊆ {bi,mi}.
Then ct(oi) ≤vs space({V }⋃{ct(R) | R ∈ RR}).
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As a consequence the lemma tells us that vectors V which stem from {b,m} on the one hand or
from {bi,mi} on the other can only be integrated in a set of vectors V V (rt(V V ) as in the lemma) -
without increasing the cardinality of the set V V and modulo the retranslational impact of {V }⋃

V V
- if an element of V V contains ct(o) as a solution or if an element contains ct(oi) respectively. In this
case the integration of V can be done by the procedure PROCAN using the generalized neighborhood
condition for combinations. Using this result we get the final step of the proof of a).

b) is easily deduced from a). Note that for subsets of triangles and subsets of big or small squares
PROCN always returns exactly one vector.

c) finally shows that the limit stated in b) cannot be improved. Here it suffices to give the
following example: RR := {b, di, s, f, mi}. We easily check that there are no R, R′ ∈ RR(R 6= R′)
with rt(space({ct(R), ct(R′)})) ⊆ RR. But in order to arrive at a translation with less than five
vectors such a pair of relation symbols is needed.

5 Conclusion

In this paper we have outlined an algorithm which translates descriptions of (underspecified) interval
relations expressed in terms of Allen’s relation symbols into minimal sets of vectors reflecting the
corresponding point-based descriptions. A complete algorithm for computing the transitive closure
of a set of interval relations which comprises this translation algorithm and a point-based path
consistency algorithm has been implemented and is part of the temporal resolution component of a
NL-text understanding system that was developed at the University of Stuttgart.
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